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From Last Week. . .

Proposition

L2
a(D) is a Hilbert space.

Sketch proof.

It suffices to show that L2
a is a closed subset of L2

(
D, dA

π

)
. We need the

following fact from Complex Analysis:

|f (w)| ≤ 1

1− |w |2
||f ||L2

a
.

1 Let {fn} ⊂ L2
a(D) and assume fn → f ∈ L2

(
D, dA

π

)
in norm.

2 Fix K ⊆ D compact. |fn(z)− fm(z)| ≤ 1
dist(K ,∂D) ||fn − fm|| . fn is

uniformly Cauchy on compact sets.

3 fn converges uniformly on K . Morera’s Theorem says fn converges to
an analytic function.
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Operator Algebras

Definition

A complex algebra is a vector space k over C with a multiplication
satisfying:

1 A(BC ) = (AB)C

2 (A + B)C = AC + BC

3 A(B + C ) = AB + AC

4 α(AB) = (αA)B = A(αB).

A Banach algebra A is a Banach space which is a complex algebra with

||AB|| ≤ ||A|| ||B||
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Definition

An involution ∗ : A → A is an operation satisfying:

1 (A∗)∗ = A

2 (AB)∗ = B∗A∗

3 (αA + B)∗ = αA∗ + B∗.

A ∗-algebra is a Banach algebra A with an involution, called the adjoint.

A is called unital if there exists an element I ∈ A such that IA = AI = A
for all A ∈ A. A is called commutative if AB = BA for all A,B ∈ A.
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Definition

A C ∗-algebra A is a ∗-algebra satisfying for all A ∈ A

||A∗A|| = ||A||2 .

Proposition

A ∗-algebra A satisfying ||A∗A|| ≥ ||A||2 for all A ∈ A is a C ∗-algebra.

Proof

1 ||A||2 ≤ ||A∗A|| ≤ ||A∗|| ||A||. So ||A|| ≤ ||A∗||.
2 Replacing A with A∗, we have ||A∗|| ≤ ||A∗∗|| = ||A||.
3 So ||A|| = ||A∗|| and ||A∗A|| ≤ ||A∗|| ||A|| = ||A||2 .
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Simple Example: C

1 C is a complex algebra over itself.

2 For z ,w ∈ C, |zw | = |z | |w |. So C is a unital commutative Banach
algebra.

3 The involution on C is z∗ = z . So C is a ∗-algebra.

4 We have |z∗z | = |z∗| |z | = |z | |z | = |z |2, so C is a C ∗-algebra.

Bounded linear operators on H

For a Hilbert space H

1 B(H) is a Banach space.

2 Define AB(h) = (A ◦ B)(h). B(H) into a complex algebra.

3 By the properties of the norm, ||AB|| ≤ ||A|| ||B||. So B(H) is a
Banach algebra.

4 The adjoint map ∗ : B(H) → B(H) mapping A 7→ A∗ is an
involution. So B(H) is a ∗-algebra.

5 We have ||A∗A|| = ||A||2. So B(H) is a unital C ∗-algebra.
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Proposition

Suppose A is is C ∗-algebra. Every A ∈ A can be written as X + iY where
X and Y are self-adjoint.

Proof

Let X =
A + A∗

2
and Y =

i(A∗ − A)

2
.

X + iY =
A + A∗

2
− A∗ − A

2
= A.

X ∗ =
A∗ + A

2
= X

Y ∗ =
i(A∗ − A)∗

2
=

i(A∗ − A)

2
= Y
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Spectral Theory

Definition

For a unital Banach algebra A, A ∈ A is invertible if there exists B ∈ A

such that AB = BA = I .

The spectrum of A is
σ(A) = {λ ∈ C : A− λI is not invertible}.

The point spectrum is the set of eigenvalues of A,
σp(A) = {λ ∈ C : ker(A− λI ) = 0}.

Example

Let A = C (Y ) and f ∈ A.
σ(f ) = {λ ∈ C : f − λ is not invertible}

= {λ ∈ C : ∃y ∈ Y st. (f − λ)(y) = 0}
= f (Y ).
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Lemma

Let A be a unital Banach algebra. If B ∈ A and ||I − B|| < 1, then B is
invertible.

Proof
1 Let C = I − B, so ||C || = r < 1. Thus, ||Cn|| ≤ ||C ||n = rn.

2 The partial sums converge so
∞∑

n=0

||Cn||. So Z =
∑∞

n=0 Cn ∈ A.

3 Let Zn = 1 + C + · · ·+ Cn. So Zn(I − C ) = I − Cn+1. Since∣∣∣∣Cn+1
∣∣∣∣ → 0, Zn(I − C ) → Z (I − C ) = I .

4 Similarly (I − C )Z = I . So I − C = I − (I − B) = B is invertible.
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Theorem

Let A be a unital Banach algebra and A ∈ A. Then σ(A) is a non-empty
compact subset of {λ ∈ C : |λ| ≤ ||A||}.

Proof

1 Let λ ∈ C st. |λ| > ||A||.
∣∣∣∣I +

(
A
λ − I

)∣∣∣∣ =
∣∣∣∣A

λ

∣∣∣∣ < 1. So
(

A
λ − I

)
is

invertible. Thus λ
(

A
λ − I

)
= A− λI is invertible. So

σ(A) ⊆ {λ : |λ| ≤ ||A||}.
2 Fix A ∈ A. τ : C→ A defined by τ(λ) = A− λI is continuous.

G = {A ∈ A : A−1exists} is open, so
τ−1(G) = {λ ∈ C : A− λI is invertible} = C \ σ(A) is open. So σ(A)
is closed.

3 σ(A) is a closed and bounded subset of C, so it is compact.
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Theorem (Gelfand-Mazur)

If A is a unital Banach algebra which is a division algebra, then A is
isometrically isomorphic to C.

Proof
1 For A ∈ A, σ(A) 6= ∅. So ∃λ ∈ σ(A) st A− λI is not invertible.

2 A− λI = 0 since A is a division algebra. So, for all A ∈ A, ∃λA ∈ C
such that A = λAI .

3 λA is unique. If A = λAI = λ′AI , then (λA − λ′A)I = 0. So
λA − λ′A = 0.

4 The map ϕ(A) = λA is an isometry since
||ϕ(A)|| = |λA| = ||λAI || = ||A|| .

Corollary

For A a Banach algebra and M ⊆ A a maximal ideal, then A/M ∼= C.
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Ideals of Banach Algebras

Definition

A complex homomorphism on a Banach algebra A is a linear map
ϕ : A → C such that ϕ(AB) = ϕ(A)ϕ(B).

Remarks
1 We usually will exclude ϕ ≡ 0.

2 If A is a unital Banach algebra and ϕ : A → C a complex
homomorphism, then ϕ(I ) = ϕ(II ) = ϕ(I )ϕ(I ). Hence ϕ(I ) = 1.

3 Let A be invertible in unital Banach algebra A with complex
homomorphism ϕ : A → C.

1 = ϕ(I ) = ϕ(AA−1) = ϕ(A)ϕ(A−1).

4 From the previous remark, if A is invertible then ϕ(A) 6= 0.
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Theorem

Every complex homomorphism ϕ 6= 0 of a unital Banach algebra A is
continuous and ||ϕ|| = 1.

Proof

1 For A ∈ A and ϕ(A) 6= 0, ϕ
(
I − A

ϕ(A)

)
= 0. So I − A

ϕ(A) is not

invertible.

2 So
∣∣∣∣∣∣ A

ϕ(A)

∣∣∣∣∣∣ ≥ 1. Otherwise
∣∣∣∣∣∣I − (

I − A
ϕ(A)

)∣∣∣∣∣∣ < 1 which means

I − A
ϕ(A) is invertible.

3 So in this case ||A|| ≥ |ϕ(A)|. If ϕ(A) = 0, then ||A|| ≥ |ϕ(A)| also.
So we have ||A|| ≥ |ϕ(A)| always.

4 |ϕ(A)| ≤ ||A|| says |ϕ| ≤ 1. ϕ(I ) = 1, so ||ϕ|| = 1.
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Definition

A (2-sided) ideal J in a Banach algebra A is a subspace (not necessarily
closed) of A with the property ∀A ∈ A, J ∈ J, AJ, JA ∈ J.

If J ( A we say J is a proper ideal.

If there is no ideal J′ st. J ( J′ ( A, then J is called a maximal ideal.

Remarks

For a unital Banach algebra A:

1 Every maximal ideal is closed.

2 Every proper ideal is contained in a maximal ideal.
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Definition

For A a unital commutative Banach algebra, define

MA = {ϕ : A → C : ϕ is a complex homomorphism}.

We call MA the maximal ideal space of A.

Theorem

Let A be a unital commutative Banach algebra.

1 Every maximal ideal in A is the kernel of some ϕ ∈ MA.

2 If ϕ ∈ MA, then ker ϕ is a maximal ideal in A.

3 A ∈ A is invertible iff ϕ(A) 6= 0 for all ϕ ∈ MA.

4 A ∈ A is invertible iff A lies in no proper ideal of A.

5 λ ∈ σ(A) iff λ = ϕ(A) for some ϕ ∈ MA.
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Proposition

If A is a unital commutative C ∗-algebra and A is self-adjoint, then
σ(A) ⊂ R.

Proof

We will show ϕ(A) ∈ R for all ϕ ∈ MA.

1 For A self-adjoint in A, and t ∈ R, we have
|ϕ(A + itI )|2 ≤ ||ϕ||2 ||A + itI ||2 = ||A + itI ||2

= ||(A + itI )∗(A + itI )|| = ||(A− itI )(A + itI )||
=

∣∣∣∣A2 + t2I 2
∣∣∣∣ ≤ ||A||2 + t2.

2 For ϕ(A) = a + bi, we have

||A||2 + t2 ≥ |ϕ(A + itI )|2 = |ϕ(A) + it|2 = a2 + b2 + 2bt + t2.

3 ||A||2 ≥ a2 + b2 + 2bt. Suppose b 6= 0. By letting t → ±∞, we see
||A|| is unbounded for all self-adjoint A. I is self-adjoint and ||I || = 1.
So b = 0 and ϕ(A) = a ∈ R.
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