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From Last Week. ..

Proposition
L2(ID) is a Hilbert space.

Sketch proof.

It suffices to show that L2 is a closed subset of L2 (]D, %). We need the
following fact from Complex Analysis:

1
[f(w)| < TP

il

O Let {f,} C L2(D) and assume f, — f € L2 (D, %) in norm.

0 1 0
@ Fix K € D compact. |f,(z) — fm(2)| < Teu(K.0D) ||fo — fml| - fa is
uniformly Cauchy on compact sets.
© f, converges uniformly on K. Morera's Theorem says f,, converges to
an analytic function.
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0 Operator Algebras
© Spectral Theory

© !deals of Banach Algebras
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Operator Algebras

Definition
A complex algebra is a vector space k over C with a multiplication
satisfying:

QO A(BC)=(AB)C

Q@ (A+B)C=AC+ BC

Q@ AB+ C)=AB+ AC

Q «o(AB) = (aA)B = A(aB).

A Banach algebra 2 is a Banach space which is a complex algebra with

IABI| < [|All1|B]]
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Definition

An involution x : 2 — A is an operation satisfying:
o (A*)* — A
Q@ (AB)* = B*A*
Q (eA+ B)* =aA* + B*.

A x-algebra is a Banach algebra 2 with an involution, called the adjoint.

A is called unital if there exists an element | € A such that IA= Al = A
for all A € . 2 is called commutative if AB = BA for all A, B € 2.
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A C*-algebra 2l is a x-algebra satisfying for all A € 2
1A% Al = || Al%.

A x-algebra 2 satisfying ||A*A|| > ||A||? for all A€ 2 is a C*-algebra.

v

Proof
@ ||AI* < [|A*A|| < ||A*[|[AIl. So [|Al < [|A*]I.
@ Replacing A with A*, we have ||A*|| < ||A*|| = ||A]l.
@ So ||A|| = [|A%]] and [|A*A]| < ||A%] [|A]] = ||A[*.
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Simple Example: C

@ C is a complex algebra over itself.

@ For z,w € C, |zw| = |z| |w|. So C is a unital commutative Banach
algebra.

© The involution on C is z* =Z. So C is a x-algebra.

@ We have |z*z| = |z*||z| = |z||z| = |z|*, so C is a C*-algebra.

v

Bounded linear operators on H

For a Hilbert space H

Q@ A(H) is a Banach space.

@ Define AB(h) = (Ao B)(h). #(H) into a complex algebra.

© By the properties of the norm, ||AB|| < ||A|| ||B]|. So B(H) is a
Banach algebra.

© The adjoint map * : Z(H) — Z(H) mapping A — A* is an
involution. So Z(H) is a x-algebra.

@ We have ||A*A|| = ||A|]>. So B(H) is a unital C*-algebra.

v
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Suppose AU is is C*-algebra. Every A € 2 can be written as X + iY where
X and Y are self-adjoint.
Letx = AT gy = A 2_A)

) A+ A" A —A

X+iY = — =A
+ 1 > >
X — A+ A _x
2
v i(A* —A) :/(A _A):Y
2 2
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Spectral Theory

Definition
For a unital Banach algebra A, A € 2 is invertible if there exists B € 2
such that AB = BA = 1.

The spectrum of A is
o(A) ={A € C: A— X\l is not invertible}.

The point spectrum is the set of eigenvalues of A,
op(A) = {A € C: ker(A— \l) = 0}.

Let A= C(Y) and f € A.
o(f) ={A € C: f— X is not invertible}
={AeC:dyeYst (f-—)N(y)=0}
= f(Y).
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Let A be a unital Banach algebra. If B € 2 and ||| — B|| < 1, then B is
invertible.

Proof
Q Let C=1—-B,so||C||=r<1. Thus,

| \

coll < Jiclj” = o,

@ The partial sums converge soZ||C"||. SoZ=% 2, Ce
n=0
Q@ Let Z,=1+C+---+C". SoZ,(I — C)=1— C™1. Since
[|[C™H| =0, Zy(I = C)— Z(I - C) = 1.
Q Similarly (I — C)Z =1. Sol — C=1— (I — B) = B is invertible.

.
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Let 2 be a unital Banach algebra and A € 2. Then o(A) is a non-empty
compact subset of {\ € C: |\ < ||A]|}.

Proof

Q Let AeCst. N> Al |1+ (3 =D]|=]|3]l <1 S0 (£-1)is
invertible. Thus A (é = I) = A — Al is invertible. So
a(A) S {x - [A < IAll}-

Q@ Fix Ae A 7:C — AU defined by 7(\) = A— Al is continuous.
G ={AcA: A lexists} is open, so
771(G) = {\ € C: A— M is invertible} = C\ o(A) is open. So o(A)
is closed.

@ 0(A) is a closed and bounded subset of C, so it is compact.

| \

.
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Theorem (Gelfand-Mazur)

If A is a unital Banach algebra which is a division algebra, then 2 is
isometrically isomorphic to C.

Proof
@ For Ac 2, o(A) #0. So I\ € o(A) st A— Al is not invertible.
@ A— Al =0 since 2 is a division algebra. So, for all A€ 2, 9 4 € C
such that A = \4l.
© M4 is unique. If A= Xal = N,/, then (Aa — X,)/ = 0. So
A — Ny =0.
© The map p(A) = A4 is an isometry since
(ANl = [Aal = [[Aal]] = [|A]].

| \

For 2 a Banach algebra and M C 20 a maximal ideal, then 20/M == C.
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|deals of Banach Algebras

Definition

A complex homomorphism on a Banach algebra 2l is a linear map
¢ : A — C such that o(AB) = p(A)p(B).

Remarks
Q@ We usually will exclude p = 0.
@ If2 is a unital Banach algebra and ¢ : %l — C a complex
homomorphism, then ¢(1) = o(Il) = ¢(I)¢(l). Hence o(I) = 1.
© Let A be invertible in unital Banach algebra 2 with complex

homomorphism ¢ : A — C.
1= ¢(1) = p(AA™Y) = p(A)p(A7).

© From the previous remark, if A is invertible then ¢(A) # 0.
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Every complex homomorphism ¢ # 0 of a unital Banach algebra 2l is
continuous and ||p|| = 1.

Proof

(1] ForAEQlandw(A)#O,cp(l—ﬁ) =0. Sol—ﬁ is not
invertible.
Q@ So Hﬁ” > 1. Otherwise HI — (l — ﬁ)H < 1 which means

| \

| — A is invertible.
¢(A)
@ So in this case ||A|| > |@(A)|. If p(A) =0, then ||A|| > |p(A)]| also.
So we have ||A|| > |¢(A)| always.

Q [p(A) < [[Al] says || <1. (/) =1, so[|p|| = 1.

.
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Definition

A (2-sided) ideal J in a Banach algebra 2 is a subspace (not necessarily
closed) of 2 with the property VA € A, J € §, AJ,JA € J.

IfJ C A we say J is a proper ideal.

If there is no ideal ' st. 3 C J' C A, then § is called a maximal ideal.

RENEIS

For a unital Banach algebra 2:
© Every maximal ideal is closed.

@ Every proper ideal is contained in a maximal ideal.
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For A a unital commutative Banach algebra, define
My ={p: A — C: ¢ is a complex homomorphism}.

We call Mgy the maximal ideal space of 2.

Theorem
Let 2 be a unital commutative Banach algebra.

| A

@ Every maximal ideal in 24 is the kernel of some ¢ € Mg.
@ If ¢ € My, then ker ¢ is a maximal ideal in A.

@ A € is invertible iff o(A) # 0 for all ¢ € M.

@ A € is invertible iff A lies in no proper ideal of 2.

Q@ ) € a(A) iff \ = p(A) for some p € My.
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If A is a unital commutative C*-algebra and A is self-adjoint, then
o(A) C R.

(Proof |

We will show ¢(A) € R for all ¢ € My.
@ For A self-adjoint in U, and t € R, we have
(A + it 2 < [lel|? [|A + itl|[* = [|A + itl||*
= |[(A+ith)*(A+ it)|| = |[(A— itl) (A + it])|]
= [|A% + 2] < [JA1° + £2.

@ For ¢(A) = a+ bi, we have
JA]? + 2 > |p(A+ ith)|? = |o(A) + it]> = 8 + b? + 2bt + t2.

Q ||A|]? > a® + b? + 2bt. Suppose b # 0. By letting t — 00, we see
||A|| is unbounded for all self-adjoint A. | is self-adjoint and ||/|| = 1.
So b =0 and p(A) = a e R.

v
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