A Glimpse Into Operator Theory Part II

Robert F. Allen

George Mason University Graduate Seminar

February 14, 2006

Proposition

 $L^2_a(\mathbb{D})$ is a Hilbert space.

Sketch proof.

It suffices to show that L^2_a is a closed subset of $L^2(\mathbb{D}, \frac{dA}{\pi})$. We need the following fact from Complex Analysis:

$$|f(w)| \leq rac{1}{1-|w|^2} ||f||_{L^2_a}.$$

- Let $\{f_n\} \subset L^2_a(\mathbb{D})$ and assume $f_n \to f \in L^2\left(\mathbb{D}, \frac{dA}{\pi}\right)$ in norm.
- Six K ⊆ D compact. $|f_n(z) f_m(z)| \le \frac{1}{\text{dist}(K,\partial D)} ||f_n f_m||$. f_n is uniformly Cauchy on compact sets.
- f_n converges uniformly on K. Morera's Theorem says f_n converges to an analytic function.

A complex algebra is a vector space k over \mathbb{C} with a multiplication satisfying:

- (BC) = (AB)C
- (A+B)C = AC + BC
- (B+C) = AB + AC
- $\alpha(AB) = (\alpha A)B = A(\alpha B).$

A Banach algebra \mathfrak{A} is a Banach space which is a complex algebra with

$||AB|| \le ||A|| \, ||B||$

An involution $* : \mathfrak{A} \to \mathfrak{A}$ is an operation satisfying:

(A*)* = A
(AB)* = B*A*
(αA + B)* = αA* + B*.

A *-algebra is a Banach algebra \mathfrak{A} with an involution, called the adjoint.

 \mathfrak{A} is called **unital** if there exists an element $I \in \mathfrak{A}$ such that IA = AI = A for all $A \in \mathfrak{A}$. \mathfrak{A} is called **commutative** if AB = BA for all $A, B \in \mathfrak{A}$.

A C*-algebra
$$\mathfrak{A}$$
 is a *-algebra satisfying for all $A \in \mathfrak{A}$
 $||A^*A|| = ||A||^2$.

Proposition

A *-algebra \mathfrak{A} satisfying $||A^*A|| \ge ||A||^2$ for all $A \in \mathfrak{A}$ is a C^* -algebra.

Proof

$$||A||^2 \le ||A^*A|| \le ||A^*|| \, ||A||. \ So \, ||A|| \le ||A^*||.$$

2 Replacing A with
$$A^*$$
, we have $||A^*|| \le ||A^{**}|| = ||A||$.

3 So
$$||A|| = ||A^*||$$
 and $||A^*A|| \le ||A^*|| ||A|| = ||A||^2$.

~

Simple Example: C

- $\textcircled{O} \ \mathbb{C} \text{ is a complex algebra over itself.}$
- **②** For $z, w \in \mathbb{C}$, |zw| = |z| |w|. So ℂ is a unital commutative Banach algebra.
- **③** The involution on \mathbb{C} is $z^* = \overline{z}$. So \mathbb{C} is a *-algebra.
- We have $|z^*z| = |z^*| |z| = |z| |z| = |z|^2$, so \mathbb{C} is a C^* -algebra.

Bounded linear operators on $\ensuremath{\mathcal{H}}$

For a Hilbert space $\ensuremath{\mathcal{H}}$

- **1** $\mathscr{B}(\mathcal{H})$ is a Banach space.
- Of Define $AB(h) = (A \circ B)(h)$. $\mathscr{B}(\mathcal{H})$ into a complex algebra.
- **③** By the properties of the norm, ||AB|| ≤ ||A|| ||B||. So $\mathscr{B}(\mathcal{H})$ is a Banach algebra.
- The adjoint map $* : \mathscr{B}(\mathcal{H}) \to \mathscr{B}(\mathcal{H})$ mapping $A \mapsto A^*$ is an involution. So $\mathscr{B}(\mathcal{H})$ is a *-algebra.

So We have $||A^*A|| = ||A||^2$. So $\mathscr{B}(\mathcal{H})$ is a unital C^* -algebra.

Proposition

Suppose \mathfrak{A} is is C^{*}-algebra. Every $A \in \mathfrak{A}$ can be written as X + iY where X and Y are self-adjoint.

Proof

Let
$$X = \frac{A+A^*}{2}$$
 and $Y = \frac{i(A^*-A)}{2}$.
 $X + iY = \frac{A+A^*}{2} - \frac{A^*-A}{2} = A$.
 $X^* = \frac{A^*+A}{2} = X$
 $Y^* = \frac{\overline{i}(A^*-A)^*}{2} = \frac{i(A^*-A)}{2} = Y$

Spectral Theory

Definition

For a unital Banach algebra \mathfrak{A} , $A \in \mathfrak{A}$ is **invertible** if there exists $B \in \mathfrak{A}$ such that AB = BA = I.

The spectrum of A is $\sigma(A) = \{\lambda \in \mathbb{C} : A - \lambda I \text{ is not invertible} \}.$

The point spectrum is the set of eigenvalues of A, $\sigma_p(A) = \{\lambda \in \mathbb{C} : \ker(A - \lambda I) = 0\}.$

Example

Let $\mathfrak{A} = C(Y)$ and $f \in \mathfrak{A}$. $\sigma(f) = \{\lambda \in \mathbb{C} : f - \lambda \text{ is not invertible}\}$ $= \{\lambda \in \mathbb{C} : \exists y \in Y \text{ st. } (f - \lambda)(y) = 0\}$ = f(Y).

Robert F. Allen (GMU)

Lemma

Let \mathfrak{A} be a unital Banach algebra. If $B \in \mathfrak{A}$ and ||I - B|| < 1, then B is invertible.

Proof

• Let
$$C = I - B$$
, so $||C|| = r < 1$. Thus, $||C^n|| \le ||C||^n = r^n$.

3 The partial sums converge so $\sum_{n=0}^{\infty} ||C^n||$. So $Z = \sum_{n=0}^{\infty} C^n \in \mathfrak{A}$.

3 Let
$$Z_n = 1 + C + \dots + C^n$$
. So $Z_n(I - C) = I - C^{n+1}$. Since $||C^{n+1}|| \rightarrow 0$, $Z_n(I - C) \rightarrow Z(I - C) = I$.

Similarly (I - C)Z = I. So I - C = I - (I - B) = B is invertible.

Theorem

Let \mathfrak{A} be a unital Banach algebra and $A \in \mathfrak{A}$. Then $\sigma(A)$ is a non-empty compact subset of $\{\lambda \in \mathbb{C} : |\lambda| \leq ||A||\}$.

Proof

- Let $\lambda \in \mathbb{C}$ st. $|\lambda| > ||A||$. $||I + (\frac{A}{\lambda} I)|| = ||\frac{A}{\lambda}|| < 1$. So $(\frac{A}{\lambda} I)$ is invertible. Thus $\lambda (\frac{A}{\lambda} I) = A \lambda I$ is invertible. So $\sigma(A) \subseteq \{\lambda : |\lambda| \le ||A||\}$.
- **2** Fix $A \in \mathfrak{A}$. $\tau : \mathbb{C} \to \mathfrak{A}$ defined by $\tau(\lambda) = A \lambda I$ is continuous. $\mathfrak{G} = \{A \in \mathfrak{A} : A^{-1} \text{ exists}\}$ is open, so $\tau^{-1}(\mathfrak{G}) = \{\lambda \in \mathbb{C} : A - \lambda I \text{ is invertible}\} = \mathbb{C} \setminus \sigma(A)$ is open. So $\sigma(A)$ is closed.

③ $\sigma(A)$ is a closed and bounded subset of \mathbb{C} , so it is compact.

Theorem (Gelfand-Mazur)

If \mathfrak{A} is a unital Banach algebra which is a division algebra, then \mathfrak{A} is isometrically isomorphic to \mathbb{C} .

Proof

- **9** For $A \in \mathfrak{A}$, $\sigma(A) \neq \emptyset$. So $\exists \lambda \in \sigma(A)$ st $A \lambda I$ is not invertible.
- A − λI = 0 since 𝔅 is a division algebra. So, for all A ∈ 𝔅, ∃λ_A ∈ ℂ such that A = λ_AI.
- λ_A is unique. If $A = \lambda_A I = \lambda'_A I$, then $(\lambda_A \lambda'_A)I = 0$. So $\lambda_A \lambda'_A = 0$.

• The map $\varphi(A) = \lambda_A$ is an isometry since $||\varphi(A)|| = |\lambda_A| = ||\lambda_A I|| = ||A||.$

Corollary

For \mathfrak{A} a Banach algebra and $\mathfrak{M} \subseteq \mathfrak{A}$ a maximal ideal, then $\mathfrak{A}/\mathfrak{M} \cong \mathbb{C}$.

A complex homomorphism on a Banach algebra \mathfrak{A} is a linear map $\varphi : \mathfrak{A} \to \mathbb{C}$ such that $\varphi(AB) = \varphi(A)\varphi(B)$.

Remarks

- We usually will exclude $\varphi \equiv 0$.
- ② If \mathfrak{A} is a unital Banach algebra and $\varphi : \mathfrak{A} \to \mathbb{C}$ a complex homomorphism, then $\varphi(I) = \varphi(II) = \varphi(I)\varphi(I)$. Hence $\varphi(I) = 1$.
- Solution Let A be invertible in unital Banach algebra \mathfrak{A} with complex homomorphism $\varphi : \mathfrak{A} \to \mathbb{C}$.

$$1 = \varphi(I) = \varphi(AA^{-1}) = \varphi(A)\varphi(A^{-1}).$$

9 From the previous remark, if A is invertible then $\varphi(A) \neq 0$.

Theorem

Every complex homomorphism $\varphi \neq 0$ of a unital Banach algebra \mathfrak{A} is continuous and $||\varphi|| = 1$.

Proof

- So in this case $||A|| \ge |\varphi(A)|$. If $\varphi(A) = 0$, then $||A|| \ge |\varphi(A)|$ also. So we have $||A|| \ge |\varphi(A)|$ always.
- $|\varphi(A)| \le ||A||$ says $|\varphi| \le 1$. $\varphi(I) = 1$, so $||\varphi|| = 1$.

A (2-sided) ideal \mathcal{J} in a Banach algebra \mathfrak{A} is a subspace (not necessarily closed) of \mathfrak{A} with the property $\forall A \in \mathfrak{A}, J \in \mathcal{J}, AJ, JA \in \mathcal{J}$.

If $\mathcal{J} \subsetneq \mathcal{A}$ we say \mathcal{J} is a proper ideal.

If there is no ideal \mathcal{J}' st. $\mathcal{J} \subsetneq \mathcal{J}' \subsetneq \mathfrak{A}$, then \mathcal{J} is called a maximal ideal.

Remarks

For a unital Banach algebra \mathfrak{A} :

- Every maximal ideal is closed.
- 2 Every proper ideal is contained in a maximal ideal.

For ${\mathfrak A}$ a unital commutative Banach algebra, define

 $\mathfrak{M}_{\mathfrak{A}} = \{ \varphi : \mathfrak{A} \to \mathbb{C} : \varphi \text{ is a complex homomorphism} \}.$

We call $\mathfrak{M}_{\mathfrak{A}}$ the maximal ideal space of \mathfrak{A} .

Theorem

Let \mathfrak{A} be a unital commutative Banach algebra.

- **1** Every maximal ideal in \mathfrak{A} is the kernel of some $\varphi \in \mathcal{M}_{\mathfrak{A}}$.
- **2** If $\varphi \in \mathfrak{M}_{\mathfrak{A}}$, then ker φ is a maximal ideal in A.
- **③** $A \in \mathfrak{A}$ is invertible iff $\varphi(A) \neq 0$ for all $\varphi \in \mathfrak{M}_{\mathfrak{A}}$.
- $A \in \mathfrak{A}$ is invertible iff A lies in no proper ideal of \mathfrak{A} .
- $\lambda \in \sigma(A)$ iff $\lambda = \varphi(A)$ for some $\varphi \in \mathcal{M}_{\mathfrak{A}}$.

Proposition

If \mathfrak{A} is a unital commutative C^* -algebra and A is self-adjoint, then $\sigma(A) \subset \mathbb{R}$.

Proof

We will show $\varphi(A) \in \mathbb{R}$ for all $\varphi \in \mathcal{M}_{\mathfrak{A}}$.

• For A self-adjoint in
$$\mathfrak{A}$$
, and $t \in \mathbb{R}$, we have
 $|\varphi(A + itI)|^2 \le ||\varphi||^2 ||A + itI||^2 = ||A + itI||^2$
 $= ||(A + itI)^*(A + itI)|| = ||(A - itI)(A + itI)||$
 $= ||A^2 + t^2I^2|| \le ||A||^2 + t^2.$

• For $\varphi(A) = a + bi$, we have $||A||^2 + t^2 \ge |\varphi(A + itI)|^2 = |\varphi(A) + it|^2 = a^2 + b^2 + 2bt + t^2$.

■ $||A||^2 \ge a^2 + b^2 + 2bt$. Suppose $b \ne 0$. By letting $t \rightarrow \pm \infty$, we see ||A|| is unbounded for all self-adjoint A. I is self-adjoint and ||I|| = 1. So b = 0 and $\varphi(A) = a \in \mathbb{R}$.